Solving Buffer Problems

• Calculating the pH of a given buffer

 How to prepare a buffer at a particular pH: Calculating the [A⁻]/[HA] ratio needed

Equations for Calculations

HA represents a weak acid; A⁻ represents a weak base

 $HA \leftrightarrow H^{+} + A^{-} \qquad K_{a} = \underbrace{[H^{+}] \times [A^{-}]}_{[HA]}$ $\underbrace{K_{a}}_{[H+]} = \underbrace{[A^{-}]}_{[H+]} \qquad pH = pK_{a} + \log \underbrace{[A^{-}]}_{[HA]}$ Henderson-Hasselbach Equation

Calculation shortcut

[] = concentration in moles/L [A^-]/[HA] = (A^- in mol/L) / (HA in mol/L)

The value of L is the same for A⁻ and HA, so

 $[A^{-}]/[HA] = (mol of A^{-})/(mol of HA)$

Calculating the pH of a given buffer Sample Problem: Calculate the pH of a buffer containing 0.100 M CH₃COOH and 0.150 M NaCH₃COO. The K_a(CH₃COOH) = 1.76 x 10⁻⁵; pK_a = 4.75.

pH = $pK_a + log [A^-] = 4.75 + log (0.150/0.100);$ [HA] pH = 4.75 + 0.18 = 4.93

<u> </u>	= <u>[A</u> ⁻]	<u>1.76 x 10</u> -5	=	<u>0.150</u>
[H ⁺]	[HA]	[H ⁺]		0.100

 $[H^+] = (1.76 \times 10^{-5})/1.50$ $[H^+] = 1.17 \times 10^{-5}$; pH = 4.93

How to make a buffer

A buffer is a mixture of HA and A⁻

- 1. Mix solutions of HA and A^- .
- 2. Start with a solution of HA. Add OH⁻ to convert some of the HA to A⁻. HA + OH⁻ \rightarrow A⁻ + H₂O
- Start with a solution of A⁻. Add H⁺ to convert some of the A⁻ to HA.

 $H^+ + A^- \rightarrow HA$

Calculate how to make a buffer

Sample Problem: Calculate how to use CH_3COOH and $NaCH_3COO$ to make a buffer with a pH of 5.0 The K_a(CH₃COOH) = 1.76 x 10⁻⁵; pK_a = 4.75.

Use the Handy Equation to calculate the [A⁻]/[HA] needed.

$$\frac{K_{a}}{[H^+]} = \frac{[A^-]}{1.00 \times 10^{-5}} \qquad \frac{[A^-]}{[HA]} = \frac{1.76}{1.00}$$

So make a mixture where the ratio of NaCH₃COO to CH_3COOH is 1.76:1.00

How to make a buffer

How to make a mixture where the ratio of NaCH₃COO to CH_3COOH is 1.76 : 1.00

1. Mix 176 mL of 1.00 M NaCH₃COO with 100 ml of 1.00 M CH₃COOH (0.176 mol NaCH₃COO + 0.100 mol CH₃COOH).

 Mix 276 mL of 1.00 M CH₃COOH with 176 ml of 1.00 M NaOH (0.276 mol CH₃COOH + 0.176 mol OH⁻).
(0.100 mol CH₃COOH remain; 0.176 mol NaCH₃COO formed.)

How to make a buffer

3. Mix 276 mL of 1.00 M NaCH₃COO with 100 ml of 1.00 M HCl (0.276 mol NaCH₃COO + 0.100 mol H⁺). (0.176 mol NaCH₃COO remain; 0.100 mol CH₃COOH formed.)

Summary

Calculate the pH of a buffer, given the concentrations of HA and A⁻, use either the Henderson-Hasselbach equation or the Handy Equation.

To make a buffer at a given pH, first calculate the ratio of moles of A⁻ to moles of HA.

This video is posted on my website: chemistrysky.com