Solving Buffer Problems

- Calculating the pH of a given buffer
- How to prepare a buffer at a particular pH : Calculating the $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ ratio needed

Equations for Calculations

HA represents a weak acid; A^{-}represents a weak base
$\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$

$$
\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{-}\right]}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

"Handy Equation"

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

Henderson-Hasselbach Equation

Calculation shortcut

$$
\begin{gathered}
{[]=\text { concentration in moles } / \mathrm{L}} \\
{\left[\mathrm{~A}^{-}\right] /[\mathrm{HA}]=\left(\mathrm{A}^{-} \text {in mol} / \mathrm{L}\right) /(\mathrm{HA} \text { in } \mathrm{mol} / \mathrm{L})}
\end{gathered}
$$

The value of L is the same for A^{-}and $H A$, so

$$
\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=\left(\mathrm{mol} \text { of } \mathrm{A}^{-}\right) /(\mathrm{mol} \text { of } \mathrm{HA})
$$

Calculating the pH of a given buffer

Sample Problem: Calculate the pH of a buffer containing $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.150 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$. The $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5} ; \mathrm{pK}_{\mathrm{a}}=4.75$.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right]=4.75+\log (0.150 / 0.100) ; \\
& \frac{\mathrm{HA}]}{\mathrm{K}_{\mathrm{a}}}=\frac{\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}^{+}\right]}\left[\frac{1.76 \times 10^{-5}}{[\mathrm{HA}]}=\frac{0.150}{\left[\mathrm{H}^{+}\right]}=4.75+0.18=4.93\right. \\
& {\left[\mathrm{H}^{+}\right]=\left(1.76 \times 10^{-5}\right) / 1.50 \quad\left[\mathrm{H}^{+}\right]=1.17 \times 10^{-5} ; \mathrm{pH}=4.93}
\end{aligned}
$$

How to make a buffer

A buffer is a mixture of HA and A^{-}

1. Mix solutions of HA and A^{-}.
2. Start with a solution of HA. Add OH^{-}to convert some of the HA to A^{-}.

$$
\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

3. Start with a solution of A^{-}. Add H^{+}to convert some of the A^{-}to HA.

$$
\mathrm{H}^{+}+\mathrm{A}^{-} \rightarrow \mathrm{HA}
$$

Calculate how to make a buffer

Sample Problem: Calculate how to use $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NaCH}_{3} \mathrm{COO}$ to make a buffer with a pH of 5.0 The $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5} ; \mathrm{pK}_{\mathrm{a}}=4.75$.

Use the Handy Equation to calculate the $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ needed.

$$
\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{1.76 \times 10^{-5}}{1.00 \times 10^{-5}} \quad \frac{\left[\mathrm{~A}^{-}\right]}{[\mathrm{HA}]}=\frac{1.76}{1.00}
$$

So make a mixture where the ratio of $\mathrm{NaCH}_{3} \mathrm{COO}$ to $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.76:1.00

How to make a buffer

How to make a mixture where the ratio of $\mathrm{NaCH}_{3} \mathrm{COO}$ to $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.76: 1.00$

1. Mix 176 mL of $1.00 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ with 100 ml of 1.00 M $\mathrm{CH}_{3} \mathrm{COOH}\left(0.176 \mathrm{~mol} \mathrm{NaCH}_{3} \mathrm{COO}+0.100 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}\right)$.
2. Mix 276 mL of $1.00 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ with 176 ml of $1.00 \mathrm{M} \mathrm{NaOH}\left(0.276 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}+0.176 \mathrm{~mol} \mathrm{OH}^{-}\right)$. ($0.100 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ remain; $0.176 \mathrm{~mol} \mathrm{NaCH}_{3} \mathrm{COO}$ formed.)

How to make a buffer

3. Mix 276 mL of $1.00 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ with 100 ml of $1.00 \mathrm{M} \mathrm{HCl}\left(0.276 \mathrm{~mol} \mathrm{NaCH}_{3} \mathrm{COO}+0.100 \mathrm{~mol} \mathrm{H}^{+}\right)$. ($0.176 \mathrm{~mol} \mathrm{NaCH} 3 \mathrm{COO}^{2}$ remain; $0.100 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ formed.)

Summary

Calculate the pH of a buffer, given the concentrations of HA and A^{-}, use either the Henderson-Hasselbach equation or the Handy Equation.

To make a buffer at a given pH , first calculate the ratio of moles of A^{-}to moles of HA.

This video is posted on my website: chemistrysky.com

